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Background Based Conversation (BBC)

I Aims to generate responses by referring to background information and
considering the dialogue history at the same time
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Extraction based methods

I Pros:
I Better at locating the right background span than generation-based methods

[Mogheet al., 2018]
I Cons:

I Not suitable for BBCs:
I BBCs do not have standard answers like those in RC tasks
I Responses based on fixed extraction are directly copied from background sentences;

neither fluent nor natural
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Generation based methods

I Pros:
I Response diversity and fluency improved; able to leverage background information

I Cons:
I Selecting background knowledge by using decoder hidden states as query
I Query not containing all information from context history since LSTM does not

guarantee preserving information over many timesteps (Cho et al., 2014)

Figure: Previous generation based methods
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Motivation
I The crucial role of context history in selecting appropriate background has not

been fully explored by current methods
I Introducing knowledge pre-selection process to improve background knowledge

selection by using the utterance history context as prior information

Figure: CaKe with knowledge pre-selection
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Model overview

Figure: Model overview
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Knowledge pre-selection
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Knowledge pre-selection

Context-aware background distribution:

Pbackground = softmax(wT
p1[g;m; s;u] + bbg)
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Generator
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Final distribution Pfinal(w) = pgenPvocab(w) + (1 − pgen)Pbackground(w)
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Loss function

losst = − logP (w∗
t )

loss = 1
T

T∑
t=0

losst

L(θ) =
N∑

n=0
loss
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Experimental Setup

Datasets
I Holl-E dataset: contains

background documents including
review, plot, comment and fact
table of 921 movies and 9071
conversations

I Oracle background uses the
actual resource part from the
background documents

I 256 words background is
generated by truncating the
background sentences

Baselines
I Sequence to Sequence (S2S)(Sutskever

et al., 2014)

I Hierarchical Recurrent Encoder-decoder
Architecture (HRED)(Serban et al., 2016)

I Sequence to Sequence with
Attention (S2SA)(Bahdanau et al., 2015)

I Bi-Directional Attention Flow (BiDAF)(Seo
et al., 2017):

I Get To The Point (GTTP)(See et al., 2017;
Moghe et al., 2018)
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Experimental Setup

Our methods
Apply knowledge pre-selection:

I 256-d hidden size GRU
I 45k vocabulary size
I 30 epochs

Evaluation
I The background knowledge and

the corresponding conversations
are restricted to a specific topic

I BLEU, ROUGE-1, ROUGE-2 and
ROUGE-L as the automatic
evaluation metrics
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Overall Performance

I The models without
background
generate weak
results
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Overall Performance

I Slightly superior to
BiDAF model;
outperforms GTTP

I Performance
reduces slightly
when background
becomes longer,
but reduction is
acceptable
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Knowledge selection visualization

I Attention is very strong on several positions (b)
I Our pre-selection mechanism could help knowledge

selection
I X: background word positions; Y: (a) b2c (b) c2b (c) final distribution (d) GTTP

final distribution

I Background: I enjoyed it. Fun, August, action
movie. It’s so bad that it’s good.

I GTTP: It was so bad that it’s good.
I OURS: I agree, Fun, August, action movie.

Figure: Knowledge selection visualization
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Case study
I Context-aware Knowledge Pre-selection (CaKe) is able to generate more fluent responses

than BiDAF and more informative responses than GTTP

Table: Case study

Background The mist ... Classic Horror in a Post Modern age. The ending was one of
the best I’ve seen ...

Context
Speaker 1: Which is your favorite character in this?
Speaker 2: My favorite character was the main protagonist, David Drayton.
Speaker 1: What about that ending?

Response
BiDAF: Classic horror in a post modern age.
GTTP: They this how the mob mentality and religion turn people into
monsters.
CaKe: One of the best horror films I’ve seen in a long, long time.
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Conclusion

1. We propose knowledge pre-selection process for the BBC task; explore selecting
relevant knowledge by using context as prior query

2. Experiments show that CaKe outperforms the state-of-art
3. Limitation: Performance of our pre-selection process decreases when the

background becomes longer
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Future Work

1. Improve the selector and generator module, by methods such as multi-agent
learning, transformer models and other attention mechanisms

2. Conduct human evaluations
3. Increase the diversity of CaKe results by incorporating mechanisms such as

leveraging mutual information
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Thank You

Source code
https://github.com/repozhang/bbc-pre-selection

Contact
I Yangjun Zhang
I y.zhang6@uva.nl

Thanks for support: Ahold Delhaize, the Association of Universities in the Netherlands (VSNU), the
China Scholarship Council (CSC), the Innovation Center for Artificial Intelligence (ICAI), Huawei,
Microsoft, Naver and Google.
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