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1.1 Task-oriented Dialogue Systems (TDSs)

Task-oriented DSs > complete
certain tasks or goals on specific
domain (e.g., finding restaurants )

User: I'm looking for an affordable restaurant
System: How about Thai food?

User: Yes please, in central Cambridge
System: The House serves cheap Thai food
User: Where is it?

System: The House is at 106 Regent Street

Non-task-oriented DSs > provide
reasonable responses & entertainment
on open domain (e.g., chatbots)

User: Hey, do you know Monica?

System: Yes, I found her via AM leaks. She has
the same hobbies as I and loves to meet in
secluded area within.

User: Seriously?

System: Nope.
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1.2 Dialogue Response Selection in TDSs

Input: Dialogue context from three solirces ~
user utterances U, system responses S, retrieved results B
b

\u1 Hello! \

| s1: Hello, what can | help you with today? |
| up: Can you book a table with french food? |
| sz: Where should it be? Where should it be? |

| ug:In Paris. |
| 83: OK, let me look into some options for you. |
[ uy: In stead, could it be in Bombay? |

| s4: Sure, is there anything else to update? | .

| us: No, thanks! | 7
api_call < french, bombay, two, moderate >
bs(1): Suzette R_rating 6
bsm: Suzette R_cuisine french
bs'¥: Suzette R_location Bombay =3
b5): Slink A_rating 5
b515): Slink A_cuisine Bombay

| ss: What do you think of Suzette? | |
Output: System response

Traditionally,
o Given: a dialogue context C; =
(Ul, S1,...,Ut, St, [b%, b%, ey bi‘])
o Goal: select a response s; from
candidates by

w@(Ct) — St. (1)

o Problem. Obtaining the important
information from a complex, long
dialogue context is challenging.
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1.3 Motivation

Input: Dialogue context from three sources —
user utterances U, system responses S, retrieved results B
t

| ty: Hello! |

t=1
| s4: Hello, what can | help you with today? |

| wp: Can you book a table with french food? |
| s2: Where should it be?

t=2

| 84: Sure, is there anything else to update?
| us: No, thanks! |

| ua:lnParis. |
| s3: OK, let me look into some options for you. | =3
| wa: In stead, could it be in Bombay? | }
h t=4
=

api_call < french, bombay, two, moderate >
bs(1): Suzette R_rating 6

bs(?): Suzette R_cuisine french

bs'): Suzette R_location Bombay =3
bs; Slink A_rating 5

bs®): Slink R_cuisine Bombay

i | s5: What do you think of Suzette? | |
H Output: System response

o Given: a dialogue context
(Ut,St—l,Bt)i

» Uy = (uv1, up, ..., uy) are user
utterances;
> Sto1=(s1, 2, ..., St-1) are

system responses; and
» B, = (b}, b%,...,b}) is \-best
retrieved results from an external
knowledge base (KB).
o Goal:

¢®(UtaSt—1,Bt) — St- (2)

@ Solution. Source-specific memories
for different usage of words and
syntactic structure.
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2.1 Source-aware Recurrent Entity Network (SEntNet)
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User history

* ean you book a table for six

| am looking for a ramantic atmosphere

System history

: hello what can i help you with today
: are you looking for a specific atmosphere

: any preference on a type of cuisine

Result history

: restaurant_alimentum R_cuisine italian

restaurant_alimentum R_location londan

restaurant_alimentum R_rating 10

Query
I'd like italian cuising

Query
I'd like italian cuisine

Query
I'd like italian cuisine




2.2 SEntNet — Input module

User input
2 can you book a table for six

41 am looking for a ramantic atmosphere

Bot input
1 hello what can i help you with today

3 are you looking for a specific atmosphere

5 any preference on a type of cuisine

m

Result inpuf

t
restaurant_alimentum R_cuising italian

restaurant_alimentum R_location london

restaurant_alimentum R_rating 10

@ The embedding of the i-th utterance €;(s) for source S is

eis) = Ixh O wl + I} € R (3)
=} = = E = DA
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2.2 SEntNet — Dynamic memory module (1)

User input
2 can you book a table for six

4 | am looking for a romantic atmosphere

Bot input
1 hello what can | help you with today

3 are you looking for a specific atmosphere

5 any preference on a type of cuisine

Result input
restaurant_alimentum R_cuisine italian

restaurant_alimentum R_location lenden

restaurant_alimentum R_rating 10

Attention

@ For the j-th utterance from & in the dialogue, the memory block for
the j-th entity is updated as:
8}’(3) o(e (S)’U(S) + eis)kics) € B (4)
= ¢(Gsh! _/(S + VSk'(S) + Wse,(s)) c R (5)
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User input
2 can you book a table for six
4 1 am looking for a romantic aimosphere

2.2 SEntNet — Dynamic memory module (2)

1 hello what can i help you with today

Query
I'd like italian
3 are you looking for a specific atmosphere

5 any preference on a type of cuisine

Result input

restaurant_alimentum R_cuisine italian

restaurant_alimentum R_location london

restaurant_alimentum R_rating 10

i hJI(_S)
(s —

g o .
(S) J(S) ERd (6)
1) + &its) © hgs

hits) = hjts) © his) @+ @ hiis). I (O

RS A9 95




2.3 SEntNet — Output module (1)

User input
2 can you book a table for six

4 | am looking for a romantic atmosphere

Bot input
1 hello what can | help you with today

3 are you looking for a specific atmosphere

5 any preference on a type of cuisine
Attention

Result input
restaurant_alimentum R_cuisine italian

restaurant_alimentum R_location lenden

restaurant_alimentum R_rating 10

Attention

o Let g € R? be the embedding of the user utterance wu; for the current
turn t. The output module is defined as:

Pi(s) = softmax(thj(S)) (8)
zs = Zjhj(g)pj(g) e RY (9)
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2.3 SEntNet — Output

mOd u |e (2)
2 can you m,,k”:;fh":::s‘x W

41 am looking for a ramantic atmosphere

Bot input
1 hello what can | help you with today

3 are you looking for a specific atmosphere

5 any preference on a type of cuisine

Result input
restaurant_alimentum R_cuisine italian

restaurant_alimentum R_location londan

restaurant_alimentum R_rating 10

V4

zs, ® zs, B zs, € R34 (10)
y = Lé(g+ Hz) e R” (11)
y = softmax(y;). (12)
=] 5 = E £ DA
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3.1 Experimental setup: Datasets & Evaluation

o Datasets.

» Dialog bAbl (Bordes&Weston,2017)
» DSTC2 (Henderson et al.,2014).

Table: Statistics of the two datasets

# dialogues # words # responses Partitioning

bAbl 3,000 3,747 4,212 1000/1000/1000
DSTC2 2,785 1,229 2,406 1,168/500/1,117

o Evaluation. Turn-level accuracy — the fraction of correct responses
out of all.
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3.2 Experimental setup: Baselines

o TF-IDF. This model ranks candidate responses by TF-IDF weighted
cosine similarity between one-hot vectors of input and candidate
responses.

o Query-to-answer (Q2A). Given a query, it finds the most common
response in the train set (Weston et al., 2015).

o DQMemNN. This is the state-of-the-art for response selection on
dialog bAbl dataset (Wu et al., 2018); for a fair comparison, we used
DQMemNN without exact matching and delexicalization.

@ HHCN. This is the state-of-the-art for response selection on the
DSTC2 dataset (Liang and Yang, 2018).

o EntNet. We reproduced EntNet, which was originally introduced for
question answering and is reported to have strong reasoning abilities
(Henaff et al., 2017).
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4 Results

RQ1: How well does SEntNet predict appropriate responses?

Model bAbI DSTC2
TF-IDF 0.040 0.030
Q2A 0.570 0.220
EntNet 0.850 0.388
DQMemNN 0.863 -
HHCN - 0.661
SEntNet 0.910 0.412

Table: Comparison with baselines on the bAbl and DSTC2 datasets.
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4 Results
RQ2: How do different embeddings affect SEntNet's performance?
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Figure: Turn-level accuracy of SEntNet for different embedding spaces on bAbl
and DSTC2 datasets. (Please note that the scales on the x-axes and y-axes
differ.)
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4 Results
RQ3: How well does SEntNet perform in the case of limited data?

95.0% 45.0%
90.0% 42.5%
40.0%
§85.0% g o
£ £ 37.5%
o
§80.0% 8 35.0%
£ 75.0% S 32.5%
é E 30.0%
2 70.0% E :
27.5%
650% 250% EntNet
—— SEntNet
o o
60'OA’SO 200 400 600 800 1000 22'SA’SO 200 400 600 800 1000 1168
Unique training dialogues Unique training dialogues
(a) bAbI (b) DSTC2

Figure: Turn-level accuracy of SEntNet on both datasets, when trained with
different volumes of training dialogues. (Please note that the scales on the x-axes
and y-axes differ.)
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5 Conclusion & Future work

We propose SEntNet, a dialogue response selection model in memory
network architecture:

@ Select responses aware of source-specific history and consistently
outperforms the baselines for end-to-end TDSs.

@ Optimizing embeddings while training is useful for the performance.

@ Tolerant of sparse data and able to handle different degrees of lexical
diversity.

@ Increase of learnable parameters by introducing extra memory
modules can be addressed with parallel update mechanism design
inherited from EntNet.

In the future work, we plan to apply the source-aware context idea that
underlies SEntNet to other variant memory networks.
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Thanks for your attention!
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