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Experimental Setup

Overview

» Goal. Select an appropriate response from candidates given a dialogue
context for Task-oriented Dialogue Systems (TDSs).

Research questions

ow well does SEntNet predict appropriate responses?

ow do different embeddings affect SEntNet's performance?

ow well does SEntNet perform in the case of limited data? And
ow does lexical diversity affect SEntNet's performance?

» Problem. Obtaining key information from a complex, long dialogue context
is challenging, especially when different sources of information are available.

» Solution. Employ source-specific memories to exploit differences in the usage
of words and syntactic structure from different information sources, i.e., user,
system, and knowledge base (KB).

» Datasets. Dialog bAbl (Bordes&Weston,2017); DSTC2 (Henderson et al.,2014).
» Evaluation. Turn-level accuracy — the fraction of correct responses out of all.

System Response Selection in TDSs
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Figure: Schematic representation of SEntNet architecture with separate source-specific memory

modules Figure: Turn-level accuracy of SEntNet on both datasets, when trained with different volumes of

training dialogues (RQ3).

SEntNet’s functions depend on three modules described below.
» Input module. The embedding of the i-th utterance ¢;s) for source S is: Conclusion

eis) = Sofr O wl + 1, € RY, (2)

» Dynamic memory module. For the i-th utterance from S in the dialogue, the
memory block for the j-th entity is updated as: We propose SEntNet, a dialogue response selection model in memory network

architecture:

i T i1 T 7i—1 d
;ng(S) : O(ei(&?z({g) i 6i(ilﬁj<8)) - R ] (3) » Select responses aware of source-specific history and consistently outperforms
hj(‘s) N qb(Gihj(S) .+ ngj(.‘S) i W8€Z<S>) <R (4) the baselines for end-to-end TDSs.

i h:&?'(_S) 93(5) © ?;(5) c R (5) » Optimizing embeddings while training is useful for the performance.

/) Hh:"}(_&l) gjs) © hz(S)“ » Tolerant of sparse data and able to handle different degrees of lexical diversity.
his) = h}(é‘) D h?(S) D D hjs) (6) » Increase of learnable parameters by introducing extra memory modules can be

addressed with parallel update mechanism design inherited from EntNet.

» Output module. Let ¢ € R? be the embedding of the user utterance w; for the

current turn . The output module is defined as:
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